Bayesian Modeling for Psychologists: an aPPlied aPProach
نویسندگان
چکیده
Bayesian methods offer new insight into standard statistical models and provide novel solutions to problems common in psychological research, such as missing data. Appeals for Bayesian methods are often made from a dogmatic, theory-based standpoint concerning the philosophical underpinnings of statistical inference, the role of prior beliefs, claims about how one should update belief given new information, and foundational issues, such as the admissibility of a statistical decision. Although such a rhetorical approach is academically rigorous, it usually is not the kind of argument a practicing researcher wants to read about. Researchers care about analyzing their data in a rigorous manner that leads to clear, defensible conclusions. In this chapter, we address the reader who wants to learn something about what all the Bayesian fuss is about and whether the Bayesian approach offers useful tools to incorporate into one’s data analytic toolbox. We hope this chapter prompts readers to learn more about what Bayesian statistical ideas have to offer in standard data analytic situations. Throughout the chapter, we highlight important details of the Bayesian approach; how it differs from the frequentist approach typically used in psychological research; and most important, where it offers advantages over the methods most commonly used by academic researchers in psychology and cognate disciplines.
منابع مشابه
A Bayesian Networks Approach to Reliability Analysis of a Launch Vehicle Liquid Propellant Engine
This paper presents an extension of Bayesian networks (BN) applied to reliability analysis of an open gas generator cycle Liquid propellant engine (OGLE) of launch vehicles. There are several methods for system reliability analysis such as RBD, FTA, FMEA, Markov Chains, and etc. But for complex systems such as LV, they are not all efficiently applicable due to failure dependencies between compo...
متن کاملBayesian Sample Size Determination for Joint Modeling of Longitudinal Measurements and Survival Data
A longitudinal study refers to collection of a response variable and possibly some explanatory variables at multiple follow-up times. In many clinical studies with longitudinal measurements, the response variable, for each patient is collected as long as an event of interest, which considered as clinical end point, occurs. Joint modeling of continuous longitudinal measurements and survival time...
متن کاملA New Acceptance Sampling Design Using Bayesian Modeling and Backwards Induction
In acceptance sampling plans, the decisions on either accepting or rejecting a specific batch is still a challenging problem. In order to provide a desired level of protection for customers as well as manufacturers, in this paper, a new acceptance sampling design is proposed to accept or reject a batch based on Bayesian modeling to update the distribution function of the percentage of nonconfor...
متن کاملImproved Bayesian Training for Context-Dependent Modeling in Continuous Persian Speech Recognition
Context-dependent modeling is a widely used technique for better phone modeling in continuous speech recognition. While different types of context-dependent models have been used, triphones have been known as the most effective ones. In this paper, a Maximum a Posteriori (MAP) estimation approach has been used to estimate the parameters of the untied triphone model set used in data-driven clust...
متن کاملModeling Factors Affecting Tax Evasion in Iran's Economy Based on the Bayesian averaging approach
This study seeks to model tax evasion and identify how effective factors affect tax evasion in the Iranian economy. Recent models show the failure of traditional models; Models do not have enough ability to model hidden variables such as tax evasion. The present study considers this failure in identifying explanatory variables and experimental model design. To achieve this, the Bayesian averagi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012